Structures of ?Be studied with tensor-optimized shell model
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We study the structures of Be using the tensor-optimized shell model (TOSM) with a bare nucleon-nucleon
interaction, AV8'. In TOSM, the 2p2h configurations are variationally treated to describe the tensor correlation
in nuclei fully involving the high-momentum components [1]. The short-range correlation is treated with the
UCOM. In our previous study [2], we have investigated ®Be. Experimentally, the ®Be nucleus shows two kinds
of interesting aspects; one is the «a clustering in the yrast band states and the other is the highly excited states
in which the o decay process is not necessarily favored. The TOSM results nicely explains this feature of ®Be,
except for the small energy spacing between the yrast states and the highly excited states. The small energy
spacing is related to the lack of the component of two « clusters in the yrast states of ®Be in TOSM. In this
report, we investigate the case of "Be focusing on the energy spectrum from low-lying to highly excited states.

The TOSM wave function Yrogy is given as

Urosm = Ak lOpOhsko) + Y Ak, [1plh; kr) + Y Ay, [2p2h; ko), (1)
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where all the amplitudes {Ay,, Ak, , Ak, } are varia- 10 - —1/2"7 10
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harmonic oscillator basis states. For particle states, 72 1o
we employ the Gaussian expansion method to de- -
scribe the single-particle basis states [1]. 6 - :gg' 16

The results of ?Be for negative parity states with — —_— 5/2 —_—
T =1/2 and 3/2 in TOSM are shown in Fig. 1. We > 4r — 5/ 2=  3/97 ] 4
normalize the energy spectrum to the T=3/2 state é') 5/2 = 1/2 3/9"
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to the isobaric analog state of “Li and the TOSM Q — o 12— =—9/2"
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[3]. For T' = 1/2 states, it is found that TOSM re- e (T=3/2) %;%:3/2
produces fairly well the excitation energy spectrum % 2r —_—5/2" 5/2 =3/9" 12
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cates the lack of the a clustering component in the 8L 7 1.8
low-lying states of “Be in TOSM, as was similarly —3/ —_3/2
discussed for ®Be. 10 L 110

For T = 3/2 three states, the calculated spec- . (T=12)

trum in TOSM reproduces the experimental level 12 b =1/2_ TOSM 112
order. It is also found that the tensor contributions 5/2

in the T=1/2 states are entirely stronger than those a4l o Expt. J14

of the T=3/2 states, which is consistent to the state
dependence of the tensor force. The kinetic energy
also shows the same relation owing to the high mo-
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mentum arising from the tensor force. Figure 1: Energy spectrum of "Be using TOSM, nor-

malized to the T=3/2 state.
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